8.4: The Quadratic Formula (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    19901
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We first start with the definition of a quadratic equation.

    Quadratic equation

    A second degree polynomial equation of the form \[ax^2 + bx + c =0 \nonumber \]where \(a\), \(b\), and \(c\) are any real numbers, is called a quadratic equation in \(x\).

    The goal of this section is to develop a formulaic shortcut that will provide exact solutions of the quadratic equation ax2 +bx+c = 0. We start by moving the constant term to the other side of the equation.

    \[\begin{array}{rlrl}{a x^{2}+b x+c} & {=0} & {} & \color{Red} {\text { Quadratic equation. }} \\ {a x^{2}+b x} & {=-c} & {} & \color{Red} {\text { Subtract } c \text { from both sides. }}\end{array} \nonumber \]

    In preparation for completing the square, we next divide both sides of the equation by \(a\).

    \[x^{2}+\dfrac{b}{a} x=-\dfrac{c}{a} \quad \text { Divide both sides by } a \nonumber \]

    Now we complete the square. Take one-half of the coefficient of \(x\), then square the result.

    \(\dfrac{1}{2} \cdot \dfrac{b}{a}=\dfrac{b}{2 a}\) when squared gives \(\left(\dfrac{b}{2 a}\right)^{2}=\dfrac{b^{2}}{4 a^{2}}\)

    We now add \(\dfrac{b^{2}}{4 a^{2}}\) to both sides of the equation.

    \[x^{2}+\dfrac{b}{a} x+\dfrac{b^{2}}{4 a^{2}}=-\dfrac{c}{a}+\dfrac{b^{2}}{4 a^{2}} \quad \color {Red} \text { Add } b^{2} /\left(4 a^{2}\right) \text { to both sides. } \nonumber \]

    On the left, we factor the perfect square trinomial. On the right, we make equivalent fractions with a common denominator.

    \[\begin{array}{ll}{\left(x+\dfrac{b}{2 a}\right)^{2}=-\dfrac{c}{a} \cdot \dfrac{4 a}{4 a}+\dfrac{b^{2}}{4 a^{2}}} & \color {Red} {\text { On the left, factor. On the right, }} \\ {} & \color {Red} {\text { create equivalent fractions with }} \\ {\left(x+\dfrac{b}{2 a}\right)^{2}=-\dfrac{4 a c}{4 a^{2}}+\dfrac{b^{2}}{4 a^{2}}} & \color {Red} {\text { Multiply numerators and denominators. }} \\ {\left(x+\dfrac{b}{2 a}\right)^{2}=\dfrac{b^{2}-4 a c}{4 a^{2}}} & \color {Red} {\text { Add fractions. }}\end{array} \nonumber \]

    When we take the square root, there are two answers.

    \[x+\dfrac{b}{2 a}=\pm \sqrt{\dfrac{b^{2}-4 a c}{4 a^{2}}} \quad \color {Red} \text { Two square roots. } \nonumber \]

    When you take the square root of a fraction, you take the square root of both the numerator and denominator.

    \[\begin{aligned} x+\dfrac{b}{2 a} &=\pm \dfrac{\sqrt{b^{2}-4 a c}}{\sqrt{4 a^{2}}} \\ x+\dfrac{b}{2 a} &=\pm \dfrac{\sqrt{b^{2}-4 a c}}{2 a} \quad \color {Red} \text { Simplify: } \sqrt{4 a^{2}}=2 a \\ x &=-\dfrac{b}{2 a} \pm \dfrac{\sqrt{b^{2}-4 a c}}{2 a} \quad \color {Red} \text { Subtract } b /(2 a) \text { from both sides } \end{aligned} \nonumber \]

    Because both fractions have the same denominator, we can add and subtract numerators and put the answer over the common denominator.

    \[x=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \nonumber \]

    The quadratic formula

    The equation \(a x^{2}+b x+c=0\) is called a quadratic equation. Its solutions are given by\[x=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \nonumber \]called the quadratic formula.

    Whew! Fortunately, the result is a lot easier to apply than it is to develop! Let’s try some examples.

    Example \(\PageIndex{1}\)

    Solve for \(x: x^{2}-4 x-5=0\)

    Solution

    The integer pair \(1,−5\) has product \(ac = −5\) and sum \(b = −4\). Hence, this trinomial factors.

    \[\begin{array}{r}{x^{2}-4 x-5=0} \\ {(x+1)(x-5)=0}\end{array} \nonumber \]

    Now we can use the zero product property to write:

    \[\begin{array}{rlrl}{x+1} & {=0} & {\text { or }} & {x-5} & {=0} \\ {x} & {=-1} & {} & {x} & {=5}\end{array} \nonumber \]

    Thus, the solutions are \(x =−1\) and \(x = 5\). Now, let’s give the quadratic formula a try. First, we must compare our equation with the quadratic equation, then determine the values of \(a\), \(b\), and \(c\).

    \[\begin{array}{l}{a x^{2}+b x+c=0} \\ {x^{2}-4 x-5=0}\end{array} \nonumber \]

    Comparing equations, we see that \(a = 1\), \(b = −4\), and \(c = −5\). We will now plug these numbers into the quadratic formula. First, replace each occurrence of \(a\), \(b\), and \(c\) in the quadratic formula with open parentheses.

    \[\begin{aligned}
    x &=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \color {Red} \text { The quadratic formula. } \\ x& = {\dfrac{-(\quad) \pm \sqrt{(\quad)^{2}-4( )( )}}{2( )} \quad \quad \color {Red} \text { Replace } a, b, \text { and } c \text { with open parentheses. }}\end{aligned} \nonumber \]

    Now we can substitute: \(1\) for \(a\), \(−4\) for \(b\), and \(−5\) for\(c\).

    \[\begin{array}{ll}{x=\dfrac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-5)}}{2(1)}} & \color {Red} {\text { Substitute: } 1 \text { for } a,-4 \text { for } b} \\ {x=\dfrac{4 \pm \sqrt{16+20}}{2}} & \color {Red} {\text { Simplify. Exponent first, then }} \\ {x=\dfrac{4 \pm \sqrt{36}}{2}} & \color {Red} {\text { Add: } 16+20=36} \\ {x=\dfrac{4 \pm 6}{2}} & \color {Red} {\text { Simplify: } \sqrt{36}=6}\end{array} \nonumber \]

    Note that because of the “plus or minus” symbol, we have two answers.

    \[\begin{array}{ll}{x=\dfrac{4-6}{2}} & \text {or} & {x=\dfrac{4+6}{2}} \\ {x=\dfrac{-2}{2}} && {x=\dfrac{10}{2}} \\ {x=-1} && {x=5}\end{array} \nonumber \]

    Note that these answers match the answers found using the ac-test to factor the trinomial.

    Exercise \(\PageIndex{1}\)

    Solve for \(x: x^{2}-8x+12=0\)

    Answer

    \(2\), \(6\)

    Example \(\PageIndex{2}\)

    Solve for \(x : x^{2}=5 x+7\)

    Solution

    The equation is nonlinear, make one side zero.

    \[\begin{array}{rlrl}{x^{2}} & {=5 x+7} & {} & \color {Red} {\text { Original equation. }} \\ {x^{2}-5 x-7} & {=0} & {} & \color {Red} {\text { Nonlinear. Make one side zero. }}\end{array} \nonumber \]

    Compare \(x^2 −5x−7 = 0\) with \(ax^2 + bx + c = 0\) and note that \(a = 1\), \(b = −5\), and \(c = −7\). Replace each occurrence of \(a\), \(b\), and \(c\) with open parentheses to prepare the quadratic formula for substitution.

    \[\begin{array}{ll}{x=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}} & \color {Red} {\text { The quadratic formula. }} \\ {x=\dfrac{-( ) \pm \sqrt{( )^{2}-4( )( )}}{2( )}} & \color {Red} {\text { Replace } a, b, \text { and } c \text { with }}\end{array} \nonumber \]

    Substitute \(1\) for \(a\), \(−5\) for \(b\), and \(−7\) for \(c\).

    \[\begin{array}{ll}{x=\dfrac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-7)}}{2(1)}} & \color {Red} {\text { Substitute: } a=1, b=-5, c=-7} \\ {x=\dfrac{5 \pm \sqrt{25+28}}{2}} & \color {Red} {\text { Exponents and multiplication first. }} \\ {x=\dfrac{5 \pm \sqrt{53}}{2}} & \color {Red} {\text { Simplify. }}\end{array} \nonumber \]

    Check: Use the calculator to check each solution (see Figure \(\PageIndex{1}\)). Note that in storing \((5-\sqrt{53}) / 2\) in \(\mathbf{X}\), we must surround the numerator in parentheses.

    8.4: The Quadratic Formula (2)

    Figure \(\PageIndex{1}\): Check \((5-\sqrt{53}) / 2\) and \((5+\sqrt{53}) / 2\).

    In each image in Figure \(\PageIndex{1}\), after storing the solution in \(\mathbf{X}\), note that the left and right-hand sides of the original equation \(x^2 =5 x + 7\) produce the same number, verifying that our solutions are correct.

    Exercise \(\PageIndex{2}\)

    Solve for \(x : x^{2}+7 x=10\)

    Answer

    \((-7+\sqrt{89}) / 2,(-7-\sqrt{89}) / 2\)

    In addition to placing all square roots into simple radical form, sometimes you need to reduce your answer to lowest terms.

    Example \(\PageIndex{3}\)

    Solve for \(x : 7 x^{2}-10 x+1=0\)

    Solution

    Compare \(7x^2 −10x + 1 = 0\) with \(ax^2 + bx + c = 0\) and note that \(a = 7\), \(b = −10\), and \(c = 1\). Replace each occurrence of \(a\), \(b\), and \(c\) with open parentheses to prepare the quadratic formula for substitution.

    \[\begin{aligned}
    x &=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \color {Red} \text { The quadratic formula. } \\
    x &= \dfrac{-(\quad) \pm \sqrt{( )^{2}-4( )( )}}{2( )} \quad \color {Red} \text { Replace } a, b, \text { and } c \text { with open parentheses.}
    \end{aligned} \nonumber \]

    Substitute \(7\) for \(a\), \(−10\) for \(b\), and \(1\) for \(c\).

    \[\begin{array}{ll}{x=\dfrac{-(-10) \pm \sqrt{(-10)^{2}-4(7)(1)}}{2(7)}} & \color {Red} {\text { Substitute: } 7 \text { for } a} \\ {x=\dfrac{10 \pm \sqrt{100-28}}{14}} & \color {Red} {\text { Exponent, then multiplication. }} \\ {x=\dfrac{10 \pm \sqrt{72}}{14}} & \color {Red} {\text { Simplify. }}\end{array} \nonumber \]

    In this case, note that we can factor out a perfect square, namely \(\sqrt{36}\).

    \[\begin{array}{ll}{x=\dfrac{10 \pm \sqrt{36} \sqrt{2}}{14}} & \color {Red} {\sqrt{72}=\sqrt{36} \sqrt{2}} \\ {x=\dfrac{10 \pm 6 \sqrt{2}}{14}} & \color {Red} {\text { Simplify: } \sqrt{36}=6}\end{array} \nonumber \]

    Finally, notice that both numerator and denominator are divisible by \(2\).

    \[\begin{aligned}
    x&= \dfrac{\tfrac{10 \pm 6 \sqrt{2}}{2}}{\tfrac{14}{2}} \quad \color {Red} \text { Divide numerator and denominator by } 2. \\
    x&= \dfrac{\tfrac{10}{2} \pm \tfrac{6 \sqrt{2}}{2}}{\tfrac{14}{2}} \quad \color {Red} \text { Distribute the } 2.\\ x&=\dfrac{5 \pm 3 \sqrt{2}}{7} \quad \color {Red} \text { Simplify. }
    \end{aligned} \nonumber \]

    Alternate simplification: Rather than dividing numerator and denominator by \(2\), some prefer to factor and cancel, as follows.

    \[\begin{array}{ll}{x=\dfrac{10 \pm 6 \sqrt{2}}{14}} & \color {Red} {\text { Original answer. }} \\ {x=\dfrac{2(5 \pm 3 \sqrt{2})}{2(7)}} & \color {Red} {\text { Factor out a } 2} \\ {x=\dfrac{\not{2}(5 \pm 3 \sqrt{2})}{\not{2}(7)}} & \color {Red} {\text { Cancel. }} \\ {x=\dfrac{5 \pm 3 \sqrt{2}}{7}} & \color {Red} {\text { Simplify. }}\end{array} \nonumber \]

    Note that we get the same answer using this technique.

    Exercise \(\PageIndex{3}\)

    Solve for \(x : 3 x^{2}+8 x+2=0\)

    Answer

    \((-4+\sqrt{10}) / 3,(-4-\sqrt{10}) / 3\)

    Example \(\PageIndex{4}\)

    An object is launched vertically and its height \(y\) (in feet) above ground level is given by the equation \(y = 320+192t−16t^2\), wheret is the time (in seconds) that has passed since its launch. How much time must pass after the launch before the object returns to ground level? After placing the answer in simple form and reducing, use your calculator to round the answer to the nearest tenth of a second.

    Solution

    When the object returns to ground level, its height \(y\) above ground level is \(y = 0\) feet. To find the time when this occurs, substitute \(y = 0\) in the formula \(y = 320 + 192t−16t^2\) and solve for \(t\).

    \[\begin{array}{ll}{y=320+192 t-16 t^{2}} & \color {Red} {\text { Original equation. }} \\ {0=320+192 t-16 t^{2}} & \color {Red} {\text { Set } y=0}\end{array} \nonumber \]

    Each of the coefficients is divisible by \(−16\).

    \[0=t^{2}-12 t-20 \quad \color{Red} \text { Divide both sides by }-16 \nonumber \]

    Compare \(t^2−12t−20 = 0\) with \(at^2 +bt+c = 0\) and note that \(a = 1\), \(b = −12\), and \(c = −20\). Replace each occurrence of \(a\), \(b\), and \(c\) with open parentheses to prepare the quadratic formula for substitution. Note that we are solving for t this time, not \(x\).

    \[\begin{array}{ll}{x=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}} & \color {Red} {\text { The quadratic formula. }} \\ {x=\dfrac{-( ) \pm \sqrt{( )^{2}-4( )( )}}{2( )}} & \color {Red} {\text { Replace } a, b, \text { and } c \text { with open parentheses. }}\end{array} \nonumber \]

    Substitute \(1\) for \(a\), \(−12\) for \(b\), and \(−20\) for \(c\).

    \[\begin{array}{ll}{t=\dfrac{-(-12) \pm \sqrt{(-12)^{2}-4(1)(-20)}}{2(1)}} & \color {Red} {\text { Substitute: } 1 \text { for } a} \\ {t=\dfrac{12 \pm \sqrt{144+80}}{2}} & \color {Red} {\text { Exponent, then multiplication. }} \\ {t=\dfrac{12 \pm \sqrt{224}}{2}} & \color {Red} {\text { Simplify. }}\end{array} \nonumber \]

    The answer is not in simple form, as we can factor out \(\sqrt{16}\).

    \[\begin{array}{ll}{t=\dfrac{12 \pm \sqrt{16} \sqrt{14}}{2}} & \color {Red} {\sqrt{224}=\sqrt{16} \sqrt{14}} \\ {t=\dfrac{12 \pm 4 \sqrt{14}}{2}} & \color {Red} {\text { Simplify: } \sqrt{16}=4}\end{array} \nonumber \]

    Use the distributive property to divide both terms in the numerator by \(2\).

    \[\begin{array}{ll}{t=\dfrac{12}{2} \pm \dfrac{4 \sqrt{14}}{2}} & \color{Red} {\text { Divide both terms by } 2} \\ {t=6 \pm 2 \sqrt{14}} & \color {Red} {\text { Simplify }}\end{array} \nonumber \]

    Thus, we have two solutions, \(t=6-2 \sqrt{14}\) and \(t=6+2 \sqrt{14}\). Use your calculator to find decimal approximations, then round to the nearest tenth.

    8.4: The Quadratic Formula (3)

    Figure \(\PageIndex{2}\): Using calculator to find decimal approximations

    \[t \approx-1.5,13.5 \nonumber \]

    The negative time is irrelevant, so to the nearest tenth of a second, it takes the object approximately \(13.5\) seconds to return to ground level.

    Exercise \(\PageIndex{4}\)

    An object is launched vertically and its height \(y\) (in feet) above ground level is given by the equation \(y = 160 + 96t−16t^2\), where \(t\) is the time (in seconds) that has passed since its launch. How much time must pass after the launch before the object returns to ground level?

    Answer

    \(3+\sqrt{19} \approx 7.4\) seconds

    Example \(\PageIndex{5}\)

    Arnie gets on his bike at noon and begins to ride due north at a constant rate of \(12\) miles per hour. At 1:00 PM, Barbara gets on her bike at the same starting point and begins to ride due east at a constant rate of \(8\) miles per hour. At what time of the day will they be \(50\) miles apart (as the crow flies)? Don’t worry about simple form, just report the time of day, correct to the nearest minute.

    Solution

    At the moment they are \(50\) miles apart, let \(t\) represent the time that Arnie has been riding since noon. Because Barbara started at 1:00 PM, she has been riding for one hour less than Arnie. So, let \(t−1\) represent the numbers of hours that Barbara has been riding at the moment they are \(50\) miles apart.

    Now, if Arnie has been riding at a constant rate of \(12\) miles per hour for \(t\) hours, then he has traveled a distance of \(12t\) miles. Because Barbara has been riding at a constant rate of \(8\) miles per hour for \(t−1\) hours, she has traveled a distance of \(8(t−1)\) miles.

    8.4: The Quadratic Formula (4)

    Figure \(\PageIndex{3}\): \(50\) miles apart.

    The distance and direction traveled by Arnie and Barbara are marked in Figure \(\PageIndex{3}\). Note that we have a right triangle, so the sides of the triangle must satisfy the Pythagorean Theorem. That is,

    \[(12 t)^{2}+[8(t-1)]^{2}=50^{2} \quad \color{Red} \text { Use the Pythagorean Theorem. } \nonumber \]

    Distribute the \(8\).

    \[(12 t)^{2}+(8 t-8)^{2}=50^{2} \quad \color{Red} \text { Distribute the } 8 \nonumber \]

    Square each term. Use \((a−b)^2 = a^2 −2ab + b^2\) to expand \((8t−8)^2\).

    \[\begin{aligned} 144 t^{2}+64 t^{2}-128 t+64 &=2500 \quad \color{Red} \text { Square each term. } \\ 208 t^{2}-128 t+64 &=2500 \quad \color{Red} \text { Simplify: } 144 t^{2}+64 t^{2}=208 t^{2} \end{aligned} \nonumber \]

    The resulting equation is nonlinear. Make one side equal to zero.

    \[\begin{array}{rlrl}{208 t^{2}-128 t-2436} & {=0} & {} & \color{Red} {\text { Subtract } 2500 \text { from both sides. }} \\ {52 t^{2}-32 t-609} & {=0} & {} & \color{Red} {\text { Divide both sides by } 4 .}\end{array} \nonumber \]

    Compare \(52t^2 −32t−609 = 0\) with \(at^2 + bt + c = 0\) and note that \(a = 52\), \(b = −32\), and \(c = −609\). Replace each occurrence of \(a\), \(b\), and \(c\) with open parentheses to prepare the quadratic formula for substitution. Note that we are solving for \(t\) this time, not \(x\).

    \[\begin{array}{ll}{x=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}} & \color{Red} {\text { The quadratic formula. }} \\ {x=\dfrac{-( ) \pm \sqrt{( )^{2}-4( )( )}}{2( )}} & \color{Red} {\text { Replace } a, b, \text { and } c \text { with }}\end{array} \nonumber \]

    Substitute \(52\) for \(a\), \(−32\) for \(b\), and \(−609\) for \(c\).

    \[\begin{align*} t &= \dfrac{-(-32) \pm \sqrt{(-32)^{2}-4(52)(-609)}}{2(52)} \quad \color {Red} \text { Substitute: } 52 \text { for } a\\ t &= \dfrac{32 \pm \sqrt{1024+126672}}{104} \quad \color {Red} \text {Exponent, then multiplication.}\\ t &= \dfrac{32 \pm \sqrt{127696}}{104} \quad \color {Red} \text { Simplify. } \end{align*} \nonumber \]
    Now, as the request is for an approximate time, we won’t bother with simple form and reduction, but proceed immediately to the calculator to approximate this last result (see Figure \(\PageIndex{4}\)). Thus, Arnie has been riding for approximately \(3.743709336\) hours. To change the fractional part \(0.743709336\) hours to minutes, multiply by \(60\)min/hr.

    8.4: The Quadratic Formula (5)

    Figure \(\PageIndex{4}\): Approximate time that Arnie has been riding.

    \[0.743709336 \mathrm{hr}=0.743709336 \mathrm{hr} \times \dfrac{60 \mathrm{min}}{\mathrm{hr}}=44.62256016 \mathrm{min} \nonumber \]

    Rounding to the nearest minute, Arnie has been riding for approximately \(3\) hours and \(45\) minutes. Because Arnie started riding at noon, the time at which he and Barbara are \(50\) miles apart is approximately 3:45 PM.

    Exercise \(\PageIndex{5}\)

    At 6:00 AM, a freight train passes through Sagebrush Junction heading west at \(40\) miles per hour. At 8:00 AM, a passenger train passes through the junction heading south at \(60\) miles per hour. At what time of the day, correct to the nearest minute, will the two trains be \(180\) miles apart?

    Answer

    9:42 AM

    8.4: The Quadratic Formula (2024)
    Top Articles
    G0KSC - Simple to build, High Performance Yagi and Quad Antennas - Home of the LFA Yagi
    About | University of Illinois Urbana-Champaign
    Evil Dead Movies In Order & Timeline
    Xre-02022
    Fort Morgan Hometown Takeover Map
    Swimgs Yuzzle Wuzzle Yups Wits Sadie Plant Tune 3 Tabs Winnie The Pooh Halloween Bob The Builder Christmas Autumns Cow Dog Pig Tim Cook’s Birthday Buff Work It Out Wombats Pineview Playtime Chronicles Day Of The Dead The Alpha Baa Baa Twinkle
    122242843 Routing Number BANK OF THE WEST CA - Wise
    Weeminuche Smoke Signal
    Couchtuner The Office
    Robot or human?
    Www.politicser.com Pepperboy News
    Cad Calls Meriden Ct
    Sarah F. Tebbens | people.wright.edu
    The Potter Enterprise from Coudersport, Pennsylvania
    The Idol - watch tv show streaming online
    MADRID BALANZA, MªJ., y VIZCAÍNO SÁNCHEZ, J., 2008, "Collares de época bizantina procedentes de la necrópolis oriental de Carthago Spartaria", Verdolay, nº10, p.173-196.
    Sitcoms Online Message Board
    Osrs Blessed Axe
    South Bend Tribune Online
    WWE-Heldin Nikki A.S.H. verzückt Fans und Kollegen
    Nitti Sanitation Holiday Schedule
    Premier Reward Token Rs3
    Busted Barren County Ky
    Nashville Predators Wiki
    Les Rainwater Auto Sales
    Urban Dictionary: hungolomghononoloughongous
    Booknet.com Contract Marriage 2
    Nine Perfect Strangers (Miniserie, 2021)
    Talbots.dayforce.com
    Craigslist Southern Oregon Coast
    Why Does Lawrence Jones Have Ptsd
    Hdmovie 2
    The Blind Showtimes Near Amc Merchants Crossing 16
    Www.publicsurplus.com Motor Pool
    Miltank Gamepress
    Webworx Call Management
    Farm Equipment Innovations
    Hobby Lobby Hours Parkersburg Wv
    27 Fantastic Things to do in Lynchburg, Virginia - Happy To Be Virginia
    Albertville Memorial Funeral Home Obituaries
    How Much Is An Alignment At Costco
    Workboy Kennel
    Mg Char Grill
    Kelsey Mcewen Photos
    Family Fare Ad Allendale Mi
    CVS Near Me | Somersworth, NH
    Gpa Calculator Georgia Tech
    Complete List of Orange County Cities + Map (2024) — Orange County Insiders | Tips for locals & visitors
    Samantha Lyne Wikipedia
    Page 5747 – Christianity Today
    Model Center Jasmin
    Roller Znen ZN50QT-E
    Latest Posts
    Article information

    Author: Kimberely Baumbach CPA

    Last Updated:

    Views: 5746

    Rating: 4 / 5 (61 voted)

    Reviews: 92% of readers found this page helpful

    Author information

    Name: Kimberely Baumbach CPA

    Birthday: 1996-01-14

    Address: 8381 Boyce Course, Imeldachester, ND 74681

    Phone: +3571286597580

    Job: Product Banking Analyst

    Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

    Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.